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A UNIFYING APPROACH TO LINEAR AND NONLINEAR
ARRAY PROCESSING: A TUTORIAL

1. INTRODUCTION

Array processing is the extraction of useful information about a spatiotemporal field from mea-
surements taken using an array, or spatial configuration, of sensors. Practical restrictions on the
number of sensors and their placement, as well as the typical low signal-to-noise ratio (S/N), have
made the use of sophisticated algorithms to process the limited data an option of growing importance,
particularly as computer power increases and costs decline. The purpose of this report is to present, in
a unifying fashion, a number of recently developed array processing methods.

Methods for array processing fall into one of two broad categories, which, borrowing terminology
from computing, are described as on-line and batch. On-line methods process in real time, as the data
are received and any adaptation is incorporated through feedback loops. Batch methods accept as data
the full set of spatiotemporal measurements, usually in the form of cross-sensor correlation matrices.
Our concern here is exclusively with batch methods.

The information extracted from the data can vary; the typical view is that the data contain certain
components, signals, which can be described well using a small number of parameters, and it is the
values of these parameters that we seek. What the parameters are will depend on the physical model,
although much of the development presented here is independent of the actual physical model. We use
a planewave model in most cases, but this is not essential, either to the implementation or to the
understanding of the methods discussed. We focus on bearing estimation and speak of steering or
looking in a particular direction, but most of what we say applies to the estimation of other parameters
as well.

Because many of the methods used for bearing estimation are related to mathematical procedures
that serve other purposes (power spectrum estimation, statistical hypothesis testing) they are often dis-
cussed in the literature in a manner that obscures their relation to one another and their properties with
regard to array processing. For example, Burg's maximum entropy method satisfies a number of infor-
mation theoretic criteria, but what does it do to array data and why? We attempt, therefore, to rederive
many of the well known linear and nonlinear methods, using the unifying framework of the linear
filter. This is a natural framework, and one that has already been used in many cases. Put simply, we
wish to linearly transform the data to enhance the information-bearing components relative to the oth-
ers. The filters differ from one another with respect to the criteria of optimality that are imposed.

Several appendixes are included in this report to help make this tutorial self-contained.

We assume throughout that we have an arbitrarily configured array of M sensors, in vector loca-
tions sm, m = 1, ... , M, that the received time series at each sensor is Fourier filtered to produce, at
each successive block of time, a data vector x = (x (1), ... , x (M))T of single-frequency-bin complex
values. By limiting the methods to a single frequency, we can represent the time delays associated
with planewave arrival directions in terms of phase changes between sensors. If the sensor locations
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take the form sm = mA v, where A > 0 and v is a fixed unit vector, the array will be called a uniform
line array. If, in addition, the interelement spacing is A = one-half the wavelength, then the array is
called Nyquist. We assume throughout that A is at most 1/2 wavelength, to avoid the problem of alias-
ing.

Most of the methods discussed here use the cross-sensor correlation matrix, R = <x x+>,
where + denotes conjugate transposition and < > indicates averaging over the.x associated with each
time block. The linear filters we discuss operate on each x, but the optimality 1s measured in terms of
average performance, hence the appearance of R.

A localized farfield source at frequency w, with wavevector k and unit amplitude, produces at the
array the "steering vector"

e(k) = (exp (-iwu * s1 c), ... , exp (-icou -SM/C))T, (1.1)

where u is the unit vector normal to the planewave, c the speed of propagation, o) the (angular) fre-
quency of interest, and k = (o/ c)u. The usual model for x is

x = la(k)e(k) + n, (1.2)

where each a (k) is random, see Appendix B, n is a noise vector, and the sum is taken over all the
physically meaningful k. To allow us to use matrix notation, we restrict k to some large but finite fam-
ily; this is not a significant alteration and does not affect the subsequent development. If the signals of
interest do not correspond to planewaves, but to some other waveforms given by the physical model,
these can be substituted in our formulas wherever e(k) appears, and the k can be viewed as a vector
parameter.

In most cases the a (k)are zero except for a very small number of the k and the goal is to deter-
mine how many are nonzero and which k these are. A straightforward method for solving this problem
is based on the simple properties of the dot product of vectors. To illustrate, suppose x = e (ko) for
some fixed ko. We then form the function of k given by

P(k) = <Ie(k)+x/M12 > = e(k)+R e(k)/M2 . (1.3)

This function attains its maximum value when k = ko, from which the value of ko can be ascertained.
This estimation PI is called the conventional estimator. If x consists of several of the e (k), plus noise,
as in Eq. (1.2), PI may not work as well. If components of x are not sufficiently dissimilar (e (kl) and
e (k2), with k, close to k2 ), then PI may not resolve these two signals; this happens particularly when
M is small. Also the noise vectors can, in certain cases (such as when W is small compared to the
Nyquist frequency c-r/A&), appear to come from localized sources.

The quantity inside the absolute value in Eq. (1.3),

y (k) = e (k)+ x/M (1.4)

has the form of a linear filtering of x; that is, we can write Eq. (1.4) as y 1(k) = y W,

y(k) = b+x = b(k)Wx (1.5)

if we use b = b(k) = e(k)/M. The filter (or vector of weights) b = (b(1), ... , b(M))T depends on
k, the value being tested at the moment. We filter x through each of the b(k), hoping that, because
of the way b(k) has been designed, if x has any signal component corresponding to k this component
will be passed, while others are suppressed. Because the vectors have finite length M, it is impossible
to suppress completely all other components. In subsequent sections we consider ways of improving
the filter. In the case of PI the filter is (essentially) e(k) itself; in other methods b(k) uses e(k), but
is not simply (a multiple of) e (k), as it is here.
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Returning to Eq. (1.2), we can write it in matrix notation as

x = Ea + n, (1.6) Z-
where there are as many columns in E (and entries in a) as there are k in the large finite set we are
using. Then Eq. (1.6) is an underdetermined system of noisy linear equations and there is a sizable
literature on the subject of "solving" such systems [11. In the array processing case, there are two
aspects that make the problem distinctive:

* we usually have a collection of various x, the a (k) are viewed as random and we desire
only the average power < I a (k) 12>, or the correlation. < a (k) a (1) > and

* we have the prior information that all but a few of the a (k) are zero, and we seek ways to
incorporate this information.

The following sections present a number of methods, based on linear filtering, to help us decide
how many signal components are present and what the signal powers and cross correlations are. Those
filters constrained by b+e (k) = 1 will provide estimates of signal power, while others, not so con-
strained, provide only indicators of signal presence and do not simultaneously estimate power. At the
end of the fourth section of this report we discuss these ideas again.

Because this is a tutorial, and not a survey paper, no attempt is made to provide extensive refer-
ences to the literature as we proceed. There are a number of standard survey articles that should be
consulted, which provide good bibliographies [2-41.

2. OPTIMAL NOISE SUPPRESSION

The conventional estimator, P1 in Eq. (1.3), was derived earlier from a simple matching of x with
each e (k); if x consists of one signal component e (ko), this estimator will tell us what ko is. For cer-
tain noises, however, PI can produce misleading results. The purpose of this section is to consider
filters designed to optimally suppress the effect of the noise vector n.

We now assume that the a (k) each have mean zero, that n has mean zero, and that the a (k) are
independent of n (although not necessarily of each other). We also assume that the averaging time
(number of time blocks) is sufficient to permit R to be written approximately as

R = Ro = or2EAOE+ + p2No, trace(Ao) = trace(NO) = M, (2.1)

with cr2A o= [<a(k) a()>], p2NO= <n(m) n(j)>1. Our goal is to estimate A 0, which we do not
assume to be diagonal, so as to include the possibility of correlated arrivals. In what follows we use A
and N to denote prior estimates of o-2 Ao and p2N0.

If all the a (k) are zero (no signals) then the conventional estimator gives

P (k) = e (k)+Re (k)/M 2 - p2e (k)+Noe (k)/M2 , (2.2)

so that if No = I (I the identity matrix) then PI (k) is constant for all k. If the noise is correlated
between sensors (No if I), however, PI (k) can exhibit local maxima that can be mistaken for low
level signals.

Holding k fixed for the moment, consider two hypotheses: (Ho) R = No (no signals); (HIl)
R = e (k) e (k)+ + No. Let b be any linear filter (complex M-vector) and consider its performance in
each case. We have

(Ho): <I b+x I2> = b+Rb = b+Nob; and (2.3)

(HI): < Ib+x 2> = Ib+e(k)I2 + b+Nob. (2.4)

3
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We choose b to pass e(k) undistorted (b0e(k) - 1), while minimizing b'Nb. It follows from vector
calculus that

b = XN-'e(I), with X = l/e ( )+N'e (Ic). (2.5)

Applying this filter to our data vectors, x produces output

y2(k) = ke(k)+N-1 x; (2.6)

the average magnitude squared output is our optimal noise suppression estimator,

P2(k) = < y2(A) 12> = X2e (W)+N~RN-Ie W). (2.7)

Note that if the noise is assumed to be uncorrelated (N = I), then PI (I) = P2 () for all k.

Correlated noise matrices are a common occurrence when a uniform line array is used in which
the spacing A is smaller than the Nyquist rate (1/2 wavelength or c/cw). Cox [51 discusses various
intersensor correlations that can be observed in commonly encountered ambient noise environments.
In practice we usually do not know No exactly, so we either model it using prior information or esti-
mate it from neighboring frequency bins or signal-absent measurements, if available. One particular
matrix that is used to model ambient (spherical) isotropic noise on a uniform line array is the sinc
matrix, with entries

Nmoj = <n(m) n(j)> = sin[(m -j)AA)/cI/(m -j)A7r. (2.8)

If the array is Nyquist, then this matrix is I; otherwise sensors are mutually correlated.

The estimator P2 (k) requires the inversion of N. If N is the sinc matrix and A is considerably
smaller than irc/w, then approximately M(Ao/ir c) of its eigenvalues are close to 1, the rest is close to
zero and N is ill-conditioned [6]. If we use the sinc matrix in place of the true No in computing P2 (k),
and if the true No also contains a small amount of uncorrelated noise, then the estimator becomes
unstable. It is' always safer to add a little to the main diagonal of the sinc matrix for stability.

In deriving P2 we held k fixed and considered two possibilities: no signal (Ho); and one signal in
the k direction (H1). Clearly there is another alternative; there can be signals in other directions. The
filter Eq. (2.5) is not designed to take this into account. Consequently the presence of signals in
nearby directions can cause a large output in the k direction, even when there is no signal in that direc-
tion. This can lead to loss of resolution and poor sidelobe structure.

The term "sidelobe structure" refers to the various values of an estimator P(I) if k is held fixed,
but R = e (1) e (l)+ is varied as a function of l. That is, the sidelobe structure is the estimator output
at k caused by a single signal e (I), viewed as a function of l. Clearly it is good to have low sidelobes,
so that signals in other directions do not produce high output in direction k. One problem with the PI
estimator that persists, even when the noise is uncorrelated, is the dependence of the sidelobe structure
on the array configuration. We consider this problem next.

3. OPTIMAL SIDELOBE PLUS NOISE SUPPRESSION

As before, we hold k fixed temporarily and design the filter b = b(k). We define the sidelobe
function of filter b to be

s(i) = b+e(l), (3.1)

the output of the filter when the input is e (1). Subject to the constraint b+ e (I) = 1, we minimize

IS (1) 12 + b+Nb. (3.2)

4
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Note that because s (k) = 1 by constraint, it is not necessary to say "I • k" in the summation. We can
write

ISQW 1 1 SO() SM (|+ b+| e~leM+ b = b+ EE+ b

so Eq. (3.2) becomes b+(EE+ + N)b. Our solution is then

b = X(EE+ + N)Yle(c), A = l/e(ck)+(EE+ + N)Yle(I). (3.3)
Applying this filter to the data gives

y3() = Xe(k)+'(EE+ + N)- x, (3.4)
and estimator

P3(k) = < y3(k) 2> = X2e((k)+(EE+ + N)-1 R(EE+ + N)-'e(I). (3.5)

Implicit in our concern about sidelobe structure is our desire to control the average behavior of our
estimator, as signals appear at the various 1. Compare P3 and P1 in this average sense, with
N = 0= O0.

For a given I and R = e (1) e (1)+, the estimator PI (k) yields

Pi(k;l) = e(W)+e(l)e(h )+e(eI)/M 2, (3.6)

so that averaging over I we get (except for a constant)

average (P1 (k;I)) = e() +| e(l)e(l)+ e(I) = e( )+EE+e (). (3.7)

Using P3 instead we obtain

P3(k;1) = A2g(k)+(EE+)-le(I)e(l)+(EE+)-'e(k), (3.8)

so that averaging over I gives (except for a constant)

average P3(k;l) = ).2eI(k)+(EE+)- EE+(EE+)-le(I) (3.9)

= 1/e(k)+(EE+)-'e(k).

As we see in Section 5, Eq. (3.9) is the maximum likelihood or Capon's estimator of the field consist-
ing of a uniform distribution of the e(l). Examination of Eq. (3.9) for specific array configurations
shows it to be essentially constant over k, whereas Eq. (3.7) can vary considerably as a function of k.

If we have some prior information about the relative power in signals and noise, we could modify
the above procedure and instead

minimize f32b+EE+b + b+Nb, subject to b+ e()= 1. (3.10)

This leads to a generalized version of P3:

P3() = a2 e((k)+(Q2EE+ + N)-1 R (82EE+ + N)' e(I), (3.11)

with a 2 = 1 e (k)+(0 2EE+ + NY' e (). Note that even when the noise, is assumed to be uncorrelated
(N = 1), the P1 estimator will not be an optimal sidelobe suppression estimator unless EE+ = I as
well. The matrix EE+ involves the geometry of the array and the chosen set of 1. In fact EE+ may be
identical to a matrix one might use to model ambient noise; it might be a sinc matrix, for example.
This is because one way to model ambient noise is by imagining a large number of independent far-
field sources uniformly distributed in space or in a plane [5].

5
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In this section we have improved upon the P2 estimator by including sidelobe suppression as a
constraint. A problem still remains, however. Because we do not yet know which signals are present,
we do not know which sidelobes (which l) are troublesome. Sidelobes are a problem only when some-
thing is out there in that direction. In the next section of this report we look at how we might use prior
information to suppress primarily those sidelobes that pose a problem.

4. INCORPORATING PRIOR INFORMATION

In the previous section, we derived the estimator P3 (3.11) by including in that part of the data to
be filtered out all signal components, corresponding to I different from k, that might be present. If we
have prior knowledge of the locations and relative strengths of actual signals we can use this to modify
our estimator. The resultant procedure is related to the optimal Bayesian solution for Eq. (1.6) [1].

Suppose that we have a prior estimate, A, of the signal correlation matrix AO. For fixed k we
seek filter b to minimize

b+(EAE+ + N)b, subject to b+e(I) = 1. (4.1)

The desired b is

b = (EAE+ + N)le(Ik), X = A(k) = l/e(k)+ (EAE+ + N)-1 e(I). (4.2)
The filter output is

y4(M) = X(k) e(k)+ (EAE+ + N)-Yx, (4.3)

and the averaged squared output is our estimator,

P4 (I) = X(I)2 e(k)+ (EAE+ + N)-' R (EAE+ + N)' e(k). (4.4)

The output y4(k), viewed as an estimate of a (k), is closely related to the Bayesian solution of Eq.
(1.6), as we now show.

I With the assumption that a and n are independent complex Gaussian random vectors (see
Appendix B) with mean zero and covariance matrices AO and No, respectively, the probability density of
x, given a, is

P(xIa)- exp (-(x - Ea)+ (p2No)-(x - Ea)), (4.5)

where - means "is proportional to." The probability density of a itself is

p(a)- exp (- a+(a2 Ao)- 1a), (4.6)

so that the probability density of a given x, is

P(aIx)- p(xla)p(a), (4.7)
or

p(a Ix)- exp -(x - Ea)+ (p2No)-l (x - Ea) - a+( 2 AO)-la]. (4.8)

The Bayesian approach tells us to select as our estimate of a the expected value of Eq. (4.8). But the
expected value in this case is also the value of a for which Eq. (4.8) is largest. Consequently the Bayes
estimate is a, where a minimizes

G(a) = (x - Ea)+ (p2 No)-'(x - Ea) + a+ (ar&Ao)-'a. (4.9)
From vector calculus it follows that

a e o2 AOE+ (0.2 E£40E+ + p2No)YX. (4.10)

6
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Consider for a moment the case in which AO is diagonal, Ao = diag {Ao(1,1) Jall 1). Then the kth entry a.
of Eq. (4.10) becomes _.

a(I) -2 AO (k,k) e(k)+ (.2 EAo E+ + p2 No)-ix. (4.11) U

Here the statistics are known (o-2AO and p2No assumed known) and are being used to estimate an indi-
vidual a. In Eq. (4.3), A and N are estimates of a2AO and p2NO. Also X(k) is an estimate of
Or2A 0((k,I), which is the true signal power in the k direction. The expression for X (k) in Eq. (4.2) will
be encountered again in Section 5 of this report; it is the Capon, or maximum likelihood (ML) estima-
tor of k directional signal power, given EAE+ + N as the cross-sensor correlation matrix. So A () is a
prior estimate of signal power, based on our prior estimate of Ro.

Returning to the general case, in which AO is not necessarily diagonal, it is interesting to note that
the Bayes estimator Eq. (4.10) does not have the same form as (4.3). The kth entry of a can be writ-
ten

a k() = a2 | Ao (k,l) e(1)+J (a2 A04E+ + p2No)-lx, (4.12)

which suggests that when signals are correlated, our constraint b+ e () = 1 is not the best thing to use.
This makes sense; up to now our approach has been to hold k fixed, find b (), derive the estimates
for a (I) and < Ia (I) 12 >, and then move to another k. We do not require the estimate y (I) or P(I)
to have any particular global properties, as functions of k. But when the signals are correlated what
happens at one k is related to what happens elsewhere; this has not been taken into account in the
development so far.

Based on the Bayesian solution in the general case, we can modify estimators y4 and P4 as follows:

y4 (I) = A (kIl)e (1)+J(EALE+ + N)-Yx,

P'4 (k) = < ly'4(k)12 >. (4.13)

Unless we have sufficient prior information to warrant using a nondiagonal A as our estimate of AO,
these modified estimators reduce to those of Eqs. (4.3) and (4.4).

As previously mentioned, the A(k) used in Eq. (4.3) is a prior estimate of A(2AO(k,k). Suppose
A = diag {A (1,1)1 and we consider the signals-only case. Then A(k) = l/e(kc)+ (EALEY'e(k). With
L = diag {A (1)), is it true that L = A, that is, are our initial estimates of the signal powers the same as
the A (I)? No, they are different, generally. Writing

1/X(k) = e(k)+ (FA E+)-l e(k), (4.14)

we see that the diagonal entries of the matrix E+ (FAE+)-E are 1/A (1), so that the diagonal entries of
AE+(EAE+)-E are A (,1)/A (1). But the trace is the sum of the diagonal entires, so

trace(AE+(EAE+)-L E) F . A (I,i)/A(I). (4.15)

But trace (AE+(EAE+)-1 E) = trace (EAE+)-l EAE+) = M so

M= A (l,)/A(l). (4.16)

If there are more than M nonzero A (1,1) in the summation, then not all the terms can equal 1. We
shall return to this point in our discussion of Capon's method in Section 5.

The linear methods presented in the first four sections of this report provide estimates of the
power in the various directions for the components that are passed by the filters: the various PN() are

7
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considered to be estimators of < Ia (W) 12>, so that when there is no signal in the k direction P(k)
should be nearly zero. The problem then is to constrain the filters b (k) properly. Later in this report
we consider nonlinear methods. It is not correct to view these estimators as giving power: they give
only indications, through their peaks, of signal presence. Once we have used these methods to deter-
mine J, the number of actual sources, and their corresponding k we can include these quantities as
prior information in a Bayesian approach to estimating AO. We can, for example, take A (k,k) = 1 if k
corresponds to an actual source, according to our best estimates, and 0 otherwise. Then rank (EAE')
is J. Our estimate of a (k) is then y4 (M) in Eq. (4.3). To estimate AO(k,l) we can use
<y4 (k)y 4 (I)>, where k and I are limited to those values already deemed to correspond to actual
sources.

5. DATA ADAPTIVE FILTERING AND CAPON'S METHOD

We saw, in our discussion of the Bayesian method and its relation to the estimators in the last
section, that the matrix EAE + N that appears in Eqs. (4.3) and (4.4) is a prior estimate of the matrix
o.2EAOE+ +p2No, which is our model for the true cross-sensor correlation matrix, Ro. Capon's idea is
to dispense with prior estimates of Ro and to use instead the actual measured R.

Holding k fixed, we find that the desired filter b is now

b = A(O)R-'e(k),A(k) = l/e(k)+R-le(k), (5.1)
the filter output is

y5(k) = b+x = A(k)e(k)+R-'x (5.2)
and the averaged squared output power is the estimator,

P5(k) = A(k)2 e(k)+R-'RR-'e(k) = 1/e(k)+R-'e(k) = A(k). (5.3)

This power estimate is Capon's maximum likelihood (ML) estimator. Note this estimator is not linear,
that is although y5(k) = b+x appears to be a linear function of x there is a hidden occurrence of x in
the b+ term, because b depends now on R, which depends on x. For this reason, ML is called a non-
linear estimator. It has also been referred to as a data adaptive procedure, because the filter adapts not
to any prior estimate of what is out there, but to the actual data contained in R. It is helpful to note
that the filtering scenario, whereby x is received and filtered by b to produce y (k), cannot now occur
in time, because of the dependence of b on the entire collection of data vectors x. The averaged mag-
nitude squared of the filter output is no longer power because of the dual dependence on x.

How well does P5 (N) estimate power in the kth signal component? To see, let us imagine a
noise-free case, with uncorrelated signals, R = a 2-EAO.E, A0 = diag (A 0 (II)}. Recalling our discussion
concerning L and A at the end of the previous chapter, we know that we do not have
P5(k) = 'Ao(Ick,k) for each k, generally. Because the sum of a-2Ao(k,k)/PP5(k) over all k must equal
M Eq. (4.16), the P5 (k) can equal the a2 Ao(k,k) only if there are precisely M nonzero entries on the
diagonal of Ao. If there are fewer than M actual signals, then P5 (k) must underestimate some of the
a2 Ao(k,k), while if there are more than M signals, P5 (k) will overestimate some of their powers. In
most practical cases No is present as well, giving the appearance of many smaller signals distributed in
various directions, so typically P5 (k) overestimates the a-2AO(k,k). Part of what it sees as signal is
noise power in that direction.

Nonlinear methods have been studied carefully since the late 1960s when it was observed that
Capon's ML and Burg's maximum entropy method (ME), to be discussed later, were able to resolve
closely spaced sources that linear methods could not [7]. There are many different derivations of these
nonlinear methods that shed some light on their superior resolving capability, but by far the most
revealing approach to take is the analysis of the generalized eigenvector structure of R 181. Not only
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does this route provide a clear understanding of why nonlinear methods tend to resolve better, it helps
us see what can go wrong and suggests safer alternatives.

Assume, from now on, that there are only J(<M) values of k for which A0 (k,k) > 0. Let
these values of k be indexed kj, j = 1, . .. J, and let e(/) = e((k), a(/) = a((k). Let Bo be the J by
J matrix obtained from A 0 by removing all rows and columns whose main diagonal entry is zero. Let
F be the M by J matrix whose jth column is e (). Then Ro can be written as

R 0 =o 2FBOF+ + p2 No. (5.4)

To avoid technical difficulties we also assume that the rank of Bo is J, that is although signals may be
mutually correlated, there is no complete correlation that would reduce the rank of Bo.

The generalized eigenvectors of the pair (RONo) are the vectors zm,m = 1,...,M, that solve the
following constrained maximization problem:

maximize z+R 0z, subject to constraints z+Noz = 1 and z~z,, = 0,1 < n < m. (5.5)

The values

Cm = z4+ R 0 Zm (5.6)

are called the generalized eigenvalues corresponding to the pair (RONo); note that Cm > Cm+1 > p
2 for

all m. The Zm can also be defined as the solution to the minimization problem:

z+Rz subject to the constraints z+No z= 1, z+zn = 0,m < n < M. (5.7)

Because rank (BO) = J < M, it follows that for m > J + 1 Cm = p 2 and Zm+ (FBOF+)zm = 0.
Writing for m > J + 1,

0 = zm-(FB0 F+)zm = (F+zm)+Bo (F Zm); (5.8)

it follows from rank (BO) = J that F~zm = 0,m ; J + 1. Therefore, for each j = 1, . .. , J,

e (j)+zm = 0. (5.9)

If the model Eq. (5.5) is exactly equal to R, and we know No exactly, we can calculate the cm and Zm.
We determine J and p2 from the multiplicity and value of the lowest generalized eigenvalue, and the
value kj from the zeros of the functions e (I)+zm m > J + 1. How would we calculate these generalized
eigenvectors?

The generalized eigenvectors for the pair (RO,No) can be found by calculating ordinary eigenvec-
tors of another matrix. Let No= V+V and set T= (V+)-l R0 V-'. Let um, Am, m = 1, ... , M be
orthonormal eigenvectors and eigenvalues of T with Am > Am+, for all m. Then Zm = VP Um and
cm = Am, for all m.

In practice we do not have R0 and N0 but R and N. To avoid cumbersome notation let us use
Zm, Cm for the pair (R,N), keeping in mind that N only approximates p2No, and that the computed
cm, m > J + 1, will not be precisely identical. Let us refer to the Zm, m > J + 1, as the low general-
ized eigenvectors (LGE) and the others as high (HGE). Similarly, the um, m > J + 1, are the low
eigenvectors of T (LE), the others the high ones (HE). We now return to Capon's estimator P5 and
analyze it from the standpoint of the generalized eigenvectors of (R ,N).

Set C = diag{cm, m = 1, ... , M) (recall cm = Am), and let U be the M by M matrix whose mth
column is um. Then UCU+ = T and UU+ = I. Therefore

T-1 = UC- IU+ (5.10)

9
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and

R- = V'T- 1 (V+)-' = (V-'U)C-1(V-1U)+ = ZC-1 Z+, (5.11)

where Z is the M by M matrix whose mth column is Zm. Note if N• I, then the decomposition
R-1 = ZC-1 Z+ is not the usual eigenvector decomposition of R-1 ; in particular, the Zm are not orthog-
onal (ZZ+ •' I).

From Eq. (5.11) we can write
M

-7 CmI Zm.+ (5.12)
m-I

so that P5 (k) in Eq. (5.3) becomes

P5(Ic) = 1 C;lIe(k)tzmr (5.13)
m-l

We know from Eq. (5.9) that 0 = e ()+zm for the LGE so that if we did not have the HGE terms in
Eq. (5.13) P5(kj) would be + x. Because cm > cm+, the reciprocal weighting of terms by Cm1

emphasizes the desired LGE terms, and more so as the S/N increases.

The next step, then, in improving the performance of our estimators, is to reduce the weighting
given to the HGE terms in Eq. (5.13). We can, of course, simply calculate the Zr (assuming we know
No and the model is accurate) and keep the terms we want. This is sometimes done and we discuss it
in Section 7 of this report. First, however, we consider further improvement through constraint mod-
ification because this approach leads us to several other nonlinear.methods that have appeared in the
literature, including Burg's maximum entropy method (ME) [91, Johnson's linear predictive (LP)
estimator [21, and the Byrne-Fitzgerald extensions of ME [10, 11].

6. INCREASING LEAKAGE SUPPRESSION

Each of the estimators we have discussed so far performs well when there is a signal in the direc-
tion of look k, because of the constraint b+e (k) = 1. However, when there is no signal in direction k,
but signals nearby, there can be a high output in the k direction due to leakage from these nearby
sources. Two signals close together can cause the estimator to give a higher reading at values of k
between the two signals than it gives at either of the two themselves, causing loss of resolution. To
improve resolution we must increase leakage suppression. This is related to decreasing the weighting of
the HGE terms in Eq. (5.13), as we shall see shortly.

The LGE are orthogonal to each of the signal vectors e (),j = 1., Jso the span of these
e (j) must coincide with the span of the HGE (span meaning the collection of all linear combinations of
the indicated set of vectors). Therefore increased emphasis on signal suppression is equivalent to
reducing the HGE weighting in Eq. (5.13). Writing T = UCU+, Tn = UC" U+, n = 1, 2, ... , we see
that by raising T to a power, we increase the relative size of cm1 for m > J + 1, compared to m < J.
Suppose we replace R = V+ TV with

R (1) =V+r Tv (6.1)

in the P5 estimator. From the equation

(R W) - = ZC-" Z+ (6.2)

we see that we obtain

Pn) () = 1/ Cmnl e(I)+ zmr , (6.3)
m-l

10
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and that as n approaches +00 Eq. (6.3) approaches the explicit generalized eigenvector solution,

P6_ (k)= l e(k)+z,,|2. (6.4) a
/m-J+l A

We shall return to Eq. (6.4) in the next section of this report. Now we want to consider some special
cases of Eq. (6.3), particularly for n = 2.

Using n = 2 in Eq. (6.3), we obtain

pi2 ) ()= Ile (k)+R-INR'e (I). (6.5)

If we replace N with a dyad, pp', we obtain an approximation of Eq. (6.5) that involves less computa-
tion;

P6N( =) = I/ee() +R 1p 12. (6.6)

If the noise N is highly correlated, then p could be, for example, the largest eigenvector of N. If we
have a uniform line array and the noise is stationary, so that N is Toeplitz (constant on each diagonal),
then N is determined by its first column, which could be taken to be p. In any case, from the point of
view we have adopted, these estimators appear as approximations only. In some cases, however, Eq.
(6.6) can be derived as an optimal estimator in its own right. If we take p to be the first column of the
matrix I, then we get either Burg's ME (if R is Toeplitz) or Johnson's LP method (general R). If p is
the first column of any positive-definite Toeplitz matrix (not necessarily I), then Eq. (6.6) is (essen-
tially) the Byrne-Fitzgerald extension of ME, called the weighted reciprocal spectrum approximation
(WRSA) [111.

It has been noted in the literature that ME has resolving capability that is superior to ML [7] and
also that ME can give misleading results when the noise is correlated [12]. Both of these observations
are supported by our analysis. Because ME is an approximation of Eq. (6.5) it has the added resolving
power that comes from n = 2, instead of n = 1 for ML. If the noise is correlated, using the first row
of I as p is a poor approximation of N by dyad pp+; it is better to use the first row of N or its largest
eigenvector. Hence the misleading results when N ;• I.

Section 7 considers the explicit generalized eigenvector estimators. Because, in practice there is
model error, we must consider as well the stability of these estimators.

7. EXPLICIT GENERALIZED EIGENVECTOR METHODS

As previously noted, higher resolution is obtainable if we reduce the output power of our filters
b () for those k that do not correspond to actual signals. Let k be such a vector. In order that
b = b (k) reject entirely the signal component, it is necessary (and sufficient) that b be a linear combi-
nation of the LGE.

Let q be an arbitrary member of the span of the LGE; that is,
Mq - I dmzm-(71

m-J+1

Let b = Aq for some A. The usual constraint b+e (k)= 1 tells us that

A = A(k)= 1/ : -dme(k)+zmn (7.2)
/m-J+l

which is finite because k is not one of the kj. The filter output is then

y7(k) - A(k)q+x, (7.3)

11
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and the averaged magnitude squared output is
M

P7 () = IA(k)I2q+Rq = q+Nq/ I d.e(k)+zm 2 (7.4)
1m-J+I

This estimator is finite unless k = kj for some j, in which case it is infinite.

It is important to reiterate the assumptions on which Eq. (7.4) is based. We assume that R = Ro,
that N = No, that there are J(< M) signals present and that Bo has rank J. In practice these assump-
tions can be violated in numerous ways: the signal vectors e(k) are not precisely Planewaves; the
averaging time for R is not long enough to eliminate cross terms between signals and noise, so that
R • RO; the noise matrix No is not precisely known. Because the information we need is carried by
the nulls of the functions e (k)+zm it is easily perturbed. The main problem with P7 is robustness; that
is, stability in the presence of model errors.

One particular source of perturbation is phase error, which can be systematic (in the electronics)
or the result of wavefront curvature or array motion. These perturbations cause severe degradation of
most nonlinear methods when the noise. is correlated.

Phase errors can be modelled by taking

D = diag {exp (in'), m = 1, ... ,M}. (7.5)

with tom} M independent random variables, uniformly distributed on the interval [-ee], for some
small e > 0. We then replace R with R = DRD+ in all the estimators.

When No = I, phase errors are not a serious problem for nonlinear estimators, so long as e is
moderate-sized. But as the noise becomes correlated even small values of e (corresponding to, say,
± 3' at broadside) can cause severe degradation, even for high S/N. In Section 8 of this report, we
consider why this is the case and what can be done about it.

8. THE PROBLEM OF ROBUSTNESS

Provided all our assumptions are exactly met, the generalized eigenvector methods Eq. (7.4) give
perfect source localization and resolution, regardless of S/N level. In practice, instabilities are encoun-
tered so frequently that considerable concern has been voiced about the effectiveness of nonlinear
methods in actual situations [13,14]. Much attention is being given to understanding the causes of in-
stability and to developing ways to combat it. In this section we analyze one form of perturbation that
can lead to severe estimator degradation, phase errors with correlated noise, and discuss some recently
developed methods for stabilizing in the presence of such perturbations. Our analysis of the instability
reveals that the information we seek is redundantly stored, that most often only partial loss occurs, but
that most methods interrogate mainly the most unstable storage locations. The instability is caused by
the sort of noise fields commonly encountered in sonar array processing and is not directly related to
the particular perturbing effect, in this case phase errors, that triggers the degradation. The following
discussion summarizes Refs. 15 and 16.

If we write R = XLX+, where the columns of X are orthonormal eigenvectors of R and L =

diag {AI - AM| Am the ordered eigenvalues of R, then Capon's ML estimator becomes

IMP5 (c) = 1/,Am1Ie(Ic)+xml 2 (8.1)
m-l

with xm the mth column of X. Clearly those terms for which Am is smallest are given the most weight.
As the noise becomes correlated between sensors (No not diagonal), the xm for m near M begin to
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behave somewhat like the lowest eigenvectors of the noise-only matrix, No, and the low Am begin to
separate into two groups, those in one much smaller than those in the other [6]. If the noise is isotro-
pic (spherical) and the array is a uniform line array, then No is as in Eq. (2.8). If the spacing is much
less than 1/2 wavelength, the lowest eigenvectors of No are nearly orthogonal to all vectors e ()
corresponding to acoustically feasible planewave arrivals. Figure 8.1 illustrates what happens.

0
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-20LU
U)z
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uJ

0I-I 
< -40
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-50

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

WAVE-NUMBER (UNITS OF P1/D)

Fig. 8.1 - Estimator response using
eigenvectors 13 to 25; 1 signal

In each of the first four figures we used a simulated uniform line array with M= 25 sensors and
a spacing of 1/4 wavelength (so twice oversampled). The noise is spherically isotropic. In Fig. 8.1 we
display the bearing response function

I/ A'lle(k)+ xm 12 (8.2)

for I = 13, L = 25, with a single planewave source at broadside. In each case the top curve
corresponds to the case of no phase errors, while the five other curves involve independent simulations
of random phase errors of at most ± 50.

Figure 8.2 shows Eq. (8.2) in the same cases, but with I = 2, L = 12. The information about the
source is still preserved in the (almost) nulls of the e (k)+xm, m = 2, ... , 25, even though the noise is
not white. However, for m > 13 these (almost) nulls are not much different from neighboring values
and the relative sizes are easily disturbed when phase errors are introduced. Those for m = 2, ... , 12,
on the other hand, are much smaller than their neighbors and the relative values are not disturbed,
hence Fig. 8.2.

Figures 8.3 and 8.4 show the effect on resolution. Replacing the single source at broadside with
two uncorrelated ones, at ±0.0075ir/A, the smallest eigenvector of R (I = L = 25 in (8.2)) fails to
resolve even without phase errors (because of correlated noise) (Fig. 8.3), while the choice of
I = 8, L = 11 (Fig. 8.4) provides stable resolution.
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Fig. 8.2 - Estimator response using
eigenvectors 2 to 12; 1 signal
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Fig. 8.4 - Estimator response using
eigenvectors 8-11; 2 signals

If we wish to avoid the actual calculation of the individual eigenvectors of R and prefer an esti-
mator with the computational cost of ML, we can still shift emphasis to the more stable eigenvectors,
as we now show. The estimator

P8 (k) = 1/e(k)+R711 2(R + a2R 1)-K R-1 /2e (e) (8.3)

can be written as

P8 (k) = I/2((2 2)K J Ie()+xM 12, (8.4)

where K = 0,1,2, ... and a are parameters chosen by the user. By normalizing R to have trace 1, we
make 1 the average of the eigenvalues; taking a near 1 then emphasizes those in the middle. It is
important that a be greater than the lowest eigenvalues corresponding to unstable eigenvectors, but not
as large as Aj, where J is the number of signals. As the noise becomes increasingly correlated, the
number of stable eigenvectors decreases; by raising K we further emphasize just those eigenvalues near
a.

Figures 8.5 through 8.8 simulate a uniform line array of M = 25 sensors, oversampled by a factor
of 5 (A is one-tenth of a wavelength). Isotropic noise is 30 dB above the uncorrelated noise and there
are two signals, at (0.1 ±0.03)hr/l&, each with power -3 dB relative to the total noise power. Figure
8.5 shows (top curve) the conventional estimator, with and without phase errors (no difference), below
it the ML without phase errors, and below that ML for the same five independent sets of phase errors
used before.

Figure 8.6 shows estimator P8 (k) for the same data; from top to bottom we have K = 1, 4, and
12. Here a2 - 6.0 and each of the three graphs is actually the five phase error cases superimposed on
the errorless case, showing almost perfect stability. Remembering that K = 0 gives ML and comparing
Fig. 8.5 with K = 1 in Fig. 8.6 we see how quickly stability can be achieved as we iterate beyond ML.

Figure 8.7 shows that the estimator P8 (k) is not overly sensitive to the choice of a2; here we
have the same case as in Fig. 8.6, with K = 6 and a2 - 6.0, 1.0, and 0.5.
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Fig. 8.5 - Conventional and MLM
estimators; 2 uncorrelated signals
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Fig. 8.6 - SNLM estimators; K = 1,4,12;
2 uncorrelated signals
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When the signal arrivals are correlated most nonlinear methods degrade, either not resolving or
giving biased estimates of arrival angles [171. In Fig. 8.8 we have two signals with correlation coeffi-
cient of (0.9, 0°); shown are ML, with and without phase errors (top curves) and P8(k), K - 12,
a 2 _ 1.0 for the same cases (superimposed lower curves). As the signals become more correlated, the
second largest eigenvalue approaches those of the noise (in the uncorrelated noise case) and careful
selection of a becomes more crucial.

The real point of these findings is not the particular methods themselves, but the fact that the
desired information is still there in these highly perturbed cases. Once we know that the information is
more robustly stored in the higher eigenvectors (the ones immediately below m = J), provided the
noise is not too correlated, we can extract that information in several ways. The estimators P8 (k) are
just suggested ways of doing this.

9. COMMENTS AND CONCLUSIONS

We have derived a number of well-known array processing methods by using the notion of linear_
filter to provide a unifying approach. Certainly there are other ways to derive each of the methods; see
Ref. 18, for example, where the optimal noise suppression method is derived in three different ways.
There are other methods which we did not discuss (see Ref. 19, e.g.), but which can be understood in
terms of filtering, eigenvector analysis and the other tools we have used in this report.

The last word has not yet been written on the subject. Each application brings with it its own
peculiar requirements. Two directions of great interest at the moment, for sonar array processing, are
statistical analyses of the performance of the various methods [201 and the use of more complicated
physical models to guide the signal processing [211. Discussion of either of these topics in any detail
would have taken us too far afield, however.
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Appendix A

THE FOURIER TRANSFORM AND ITS APPROXIMATION

The Fourier transform (FT) of the function f (t) is defined to be the function

F())= f f(t) exp (ixt)dt, (Al)
for - < X < o-. Given F(o) for all w, we can recapture f by using the inversion formula,

f(t) = f F(w) exp (- iwt) dw/2ir. (A2)

For the integrals in Eqs. (Al) and (A2) to exist, it is necessary that both f and F approach zero suffi-
ciently rapidly as It I and 1w I approach -o. However, it is useful to speak of the FT of periodic func-
tions and for that the notion of the 8 function is needed; we denote by 8(w) the Fr of the function
f(t) = 1/2wr for all t, so that 8(w - a) is the FT of the function f(t) = (1/27r) exp (-iat). The 8
function 8 (w - a) is usually depicted as a spike at a and thought of as a (generalized) function that is
zero except at a but with integral 1/21r. These generalized functions can be defined more rigorously by
using limits of ordinary functions.

If we have only finitely many values of f, we cannot use Eq. (Al) directly; to obtain F we must
either model f (or F) in some way or settle for an approximation of F. We consider two cases:

Case A (equispaced data): the data values are f (mA), m = 1, . . . ,N, for some A > 0;

Case B (general data): the data values are f (ti), m = 1, ... ,N, for some N distinct values
t = ti.

We begin with the modelling approach and then consider approximation.

The simplest sort of model for f is a linear combination of N known functions, gn, with coeffi-
cients a (n) to be determined from the data;

N
f(t) = S a(n) gn (t), (A3)

n-l
with

N
f(tm) = A a(n) g (tQ), m = 1,... ,N, (A4)

n-l

determining the a (n) uniquely, so long as we have chosen the g, so that the matrix,

G = [G(m,n) = gA (tm)], (A5)

is invertible. Once the a (n) are found the FT is
N

F(w) = I a(n) G, (,), (A6)
n-l

with Gn the Fr of gn. The problem with this approach is that unless we employ prior information to
select the gn in an appropriate manner, the whole procedure is completely arbitrary. If the model is
reasonable, the Fr in Eq. (A6) will be a good estimate; if the model is not accurate Eq. (A6) will be
useless. Some methods that appear to be models are actually optimal approximations and as such are
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less arbitrary than they might appear. In other cases, when certain models are viewed as approxima-
tions they are suboptimal and should be replaced by optimal ones. One particular model that can also
be viewed as an approximation (although not always an optimal one) is the discrete Fourier transform
(DFT).

For case A the DFT model for f is
N

fDFr (t) = A a(n) exp (- iwt), (A7)
n-i

with Go,= - r (1- 2n/N)/A. The reason for this particular choice of wn is that the matrix G = E,

E = [exp (iwn m A)], (A8)

then has E- = (1/N)E+, + denoting conjugate transpose. We can then write the a (n) in closed
form: for n = 1,... ,N,

a (n) = (1/N) £ f (mlA) exp (iwn m A). (A9)
m-I

The FT estimate is then

FDFr (W) = (21r/N) I, , f(mA) exp (i)n ml)1 8(W - c0,). (A10)
n-1 m-I 

The DFT model (in case A) assumes that F(W) is the sum of N delta functions, at w = Wn. We
could, of course, select other values for the wn; all we would lose would be the computational conve-
nience of the closed form solution Eq. (A9) and the fact that Eq. (A10) can be numerically computed
rapidly, using a fast Fourier transform (FFT) algorithm.

The expression on the right-hand side of Eq. (A9) can be thought of as a function of general w;
let

H(w) = N 1l I f(mA) exp (iw mA). (All)
m-l

Then H (W) = a (n) and within the context of the modelling approach H(W) has no significance for
any &) except the wn. We see, however, that H does appear as an optimal approximation; this can
cause considerable confusion if the distinction between modelling and approximation is not clearly
made. A second source of confusion comes from the practice known as zero-padding.

Zero-padding refers to the practice of artificially enlarging the equispaced data set by appending a
number of zero values; that is, for m = N + 1, ... ,N + K let f (mA) = 0. When the larger set of
values is used as data along with the DFT, the number N in Eqs. (A7) to (A10) is replaced by N + K
and the definition of w<n changes accordingly. From a modelling standpoint we have simply changed
the model. But the function H(w) still is involved and gives the values of the new coefficients a (n) at
the new points wn, because the K new terms added to Eq. (All) are all zero. Zero-padding really only
makes sense within the context of approximation; creating new data values, equal to zero, and changing
the model seem pointless and arbitrary from a modelling perspective.

Note that in Eq. (A10) the FT estimate at ow = cn is not H(w"); it is 2 ir H(w0) 8(o - wn). As
we shall see, in approximating, that H itself is the estimate of F (except for a constant factor).
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When we pass to the general case B, there is the temptation to modify H(w) in Eq. (All) to

J (w) = N-1 £ f(tm,) exp (iGtm). (A12)
m-i

The question now is: for which N values of on is J to be used to provide the model coefficients? There
is no model for which J provides the coefficients, in general. Also, as we shall see, J is not an optimal
approximation either, in general. Although J is used in practice in the case B situations, it is an esti-
mator of F that is devoid of mathematical foundation.

Turn now to approximation. Suppose we take an arbitrary weighting function P(O) > 0 and
minimize the weighted mean squared error,

o^ N

fi' IF(W) - P(W) b(n) exp (i t,,)12 pl (co) dw, (A13)
n-1

with the notational convention that if P(w) = 0 then P- I(w) is defined to be 0 [All.

The b (n) for which the error is least must satisfy the equations
N o

f(tm) = b(n) f_ P(w) exp (i w(tn - t,))d w/27r, (A14)
n=1

m = 1, ... ,M. The FT F(w) is being approximated by a function of the form

P (aid) = P(w,) A, b(n) exp (iw)t,); (AWS)
n-1

This is not a model. We are not saying that F(w) looks like Eq. (A15), but we are using functions of
that type to approximate F(w), whatever F(w) looks like. Note that by using the t, in F(w) we are
able to use our data values on the left-hand side of Eq. (A14); if we had chosen another form for
F(w), the set of equations we would have obtained from minimizing the error would have involved
values of f that we do not have. That is, if we want a minimum weighted error approximation, the
form of the approximation is determined partially by the nature of the data (the t,, values). The P(w)
is chosen by us, and this allows us to tailor the approximation to fit whatever prior knowledge we may
have about f and F. Some examples will help to illustrate the procedure.

Example 1. Suppose we are in case A and our prior knowledge is that f is a bandlimited function
(F has bounded support) and that F(w) = 0 if 1w > 7r/A. We select P (w) to be the function that is 1
for Iw I < r/A , 0 otherwise. Then at least F(w) in Eq. (Al5) will have the proper support. Then Eq.
(Al4) becomes

f(mA) = I b(n) J/A exp (i w(n - m)A) dw/21r, (A16)
n-1

= (l/A)b(m),m I 1 ,M

so the estimator is
A N

P (X) =0 A , f (mA) exp (iwm A) = NA H(w), (A17)
m-i

for Jw I < 7r/A. Here Eq. (A17) makes sense for every w, not just for a finite number, as before.
Also, it is NA H(w) itself that now estimates F(w). We can also see more clearly the role of zero-
padding. In practice we cannot actually evaluate F(w) at all values Jw I < in/A, so we select some finite
number. Suppose we want N + K values, equispaced within [- 7r/A ,^r/A]. Then the calculations are
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exactly those we performed when we zero-padded in the modelling approach. The FFT algorithms are
designed to compute DFT models but can be used to evaluate F(w)) at N + K equispaced points if we
pretend that we had N + K data values originally.

Example 2: Suppose we have further prior information that F(w) = 0 for la! > a, for some
known ft less than ir/A. The estimate in Eq. (A17) approximated F(W) on [- -r/A,1T/AI, but we
know now that outside of the smaller interval [- ft ,ft I F(W) = 0. We then modify P (co), making it 1
if lo)l < ft,0 otherwise. Now Eq. (A14) becomes

N a
f(mA)= £b(n) exp (ico(n - m)A) dw/2ir

n-i
N sin (ft (m - n)A&)
I b(n) si (m-n)A) (A18)
n-1

Solving Eq. (A18), our estimate of F(w), valid for lwI < fQ, becomes
N

P(w)= , b(n) exp (iwm A), (A19)
in-i

where the b (n) are ( generally) not equal to (1/A)f (mA).

Example 3: Consider case B with the same prior knowledge as in example 1. Then Eq. (A14)
becomes

N sIT/A
ftm) = b(n) J exp (i (tn, - tm)) dao/2ir. (A20)

n-i

The matrix that must be inverted to find the b(n) is not just (1/A)I, as it was in example 1 (unless, of
course, tm = mA ). Consequently our estimate of F(wo), valid for lo! < 7r/A, will be

N
P(w) = I b(m) exp (iwtm). (A21)

m=l

The b (m) will not be (l/A)f (t) generally, but some other value, dependent on all the f (,). In par-
ticular Eq. (A21) will not be J(w) unless we are in case A.

In all cases we have considered here the estimators of F(w) are themselves consistent with the
data; that is, if we apply the inversion formula Eq. (A2) and check the values at the t = tM or t = mA,
we get the data values back again. This can be troublesome if the data contain some additive noise and
the matrix we invert is as in example 2, for ft much less than ff/A. To avoid instability in such cases,
it is advisable to increase the values along the main diagonal by, say, 10%, before inverting. A more
rigorous treatment of stability is beyond the scope of this appendix (see Refs. A2 and A3 and any other
articles on "regularization)".
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Appendix B

COMPLEX GAUSSIAN RANDOM VARIABLES

If X and Y are real-valued Gaussian random variables, with means mx, my and variances arx, or Y9
respectively, then the complex-valued random variable Z - X + iY may not have any of the useful
mathematical properties that we associate with the term Gaussian. For that reason it is necessary to
make further assumptions about the real and imaginary parts of a complex random variable before
calling it Gaussian. Consider here only the single variate case; the more general case is treated in detail
in Goodman [Bli.

With no further assumptions, it is the case that the mean of Z is mz = mx + imy. The variance,
rz, is

C2= EIZ- mZ1 2 =cr+ c (Bl)

regardless of possible dependence between X and Y. To have the statistics of Z completely determined
by its mean and variance (as in the real case), we must assume that X and Y are independent, which
implies then that the real random vector (X, Y) is multivariate Gaussian with a diagonal correlation
matrix.

The benefit that comes from using Gaussian statistics is due to the pleasant algebraic properties of
the density function exp (-x2 ). We would like Z to have a probability density function proportional to

P(z) = exp (-Iz-m 12/r?2) (B2)

which is

p(z) =0 exp (-[(x -mX)2 + (y - my) 2]/(ar2 + l2)). (B3)

If we assume that oj = ( Y, then Eq. (B3) becomes

p(z) = exp (---(x - mx) 2/) exp (-2y Y-my)2 / ?), (B4)
2 2

and the right-hand side of Eq. (B4) is (except for constants) the true probability density function for Z.
Therefore, Z will have a density of the form Eq. (B3) provided we assume X and Y are independent,
and (TX= (rY. In the multivariate case, similar assumptions are made about the covariance matrix of
the random vector of real and imaginary parts [B1].

We say then that Z = X + iY is a complex Gaussian random variable if X and Y are independent
real Gaussian random variables with the same variance. It then follows that (using Z - imZ, and
similarly for X, Y)

(a) Z212 - X
2 + y2 is cr X2 where X2 is a chi-squared random variable with two degrees of

freedom;

(b) 121 = -J[i22 is arzR, where R is a Rayleigh random variable;

(c) If Z = 1Iz exp (iO), then tan 0 = Y/k is a Cauchy random variable;

(d) 0 = arc tan(kY/X) is uniformly distributed over (-ir, 10.

For further discussion of these results see Refs. B2 and B3.
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Appendix C

ARRAY GAIN, DETECTION, AND LIKELIHOOD RATIOS

The basic model used in the statistical theory of detection of a narrowband source is that the data
vector x obtained from the array either has entries

x(m) = n(m), m = 1, ... ,M, (Ho), (Cl)

or

x(i) = A e1 Tm + n(), (HI), (C2)

where the n () are independent complex Gaussian random variables with mean 0 and variance p 2, A
is complex Gaussian with mean 0 and variance a>2, and rM is the time delay at the mth sensor
corresponding to a single frequency planewave with arrival angle 0 relative to broadside. The 0 is fixed,
the two hypotheses Ho and HI are the only ones admitted, and the problem is to decide which one it is.

If we simply average the entries x(m), we get
M

Yo = M-l , x(m); (C3)
m-I

if Ho is true, then y0 is complex Gaussian with mean 0, variance p2 /M, and if Hi is true, the variance
becomes

£e-jm_2 (_2/M 2) + (p2/M). (C4)
Im-l

This is fine if all the delays are Tm = 0 (broadside arrival), because then the variance is 0-2 + (p2 /M).
However, if the arrival is not broadside, the variance in the signal component can be much less than
U 2. The significance of the variance lies in the distribution of Iy0I2 : if Ho, then IyoI2 is (p 2 /M) times a

2r.v. (chi-squared with two degrees of freedom having mean 1 and variance 2), so the mean of IyoI2

is (p 2 /M). If HI, then the mean of IyoI2 is given by Eq. (C4). The objective is to increase the differ-
ence in means as much as possible, so as to improve detection. For the off-broadside cases we must
process the data differently if we wish to detect better.

One possibility is to replace y0 with

0l = Ml S x(m)e'-. (CS)
m-I

If Ho, then yi is still complex Gaussian with mean 0 and variance (p2/M). If HI, then

Yi = A + Ml In () eT m, (C6)
m-I

and (assuming signal and noise are independent) yi has mean 0 and variance (r2 + (p2 /M). The r.v.
JIy2l is then a multiple of X2 in either case, with mean either (p2/M) (if Ho) or a 2 + (p2/M) (if HI).
This selective reduction of noise mean only is what is meant by array gain; comparing input S/N (r2/p2

to output SNR o-2/(p 2/M) we have the improvement in S/N of M, hence an array gain of M. What
makes achievement of this gain possible is the ability to sum coherently the signal components in Eq.
(C5), that is, to correct for the phase differences in the Ae its terms prior to summing.
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Careful analysis of what was just done shows that there are other options besides yi in Eq. (CM).
If b = (b(1), .. . , b(M)) T is any complex vector such that -"

S b(m)e"- 1 (C7)
m-l

then we can compute
M

Y2 = I bWx(im ) (C8)
m-I

and get the same gain as before. There would be no point in this if the only cases that needed to be
considered were Ho and HI and we could assume that the n (m) are always mutually independent. In
most cases of interest, however, there can be signals with arrival angles other than 0 present in x and
the noises may be correlated between pairs of sensors. We can handle these more complicated cases by
using the freedom to select various b, constrained by Eq. (C7), but chosen to optimize such things as
sidelobe and noise suppression.

Note that our definition of array gain is based on the assumption that the n () is independent
(uncorrelated). Because array gain depends on input and output S/N, it is a function of the actual
noise field and of the vector b. We must also note that if there are sources present with arrival angles
other than 0, our procedure may or may not give us gain against those components. It depends on how
b is designed.

Let us suppose that N = [E (n (m) n) I is the noise-only correlation matrix. If we use Y2 in Etq.
(C8), then the variance of y2 is either b+ Nb (Ho) or a-2 + b+Nb (H1 ), where + denotes conjugate
transpose and we have assumed Eq. (C7). The input S/N is o2/p2 and the output S/N is a2/1b+Nb,
hence the gain obtainable from b will be

gain(b) = p2 /b+Nb. (C9)

To maximize our gain in this case, we select b so that b+Nb is minimized, subject to Eq. (C7), which
we write as b+e = 1, e = (exp (iTr), ... , exp (iTM))+. The solution is then

b = XN-le, X = l/e+N-le, (C10)

and the optimal array gain available is

optimal gain = p2(eWN1e). (Cli)

If N = p21, then Eq. (Cli) becomes M, as before. The maximum gain possible in this situation
(N • p2 1) will depend on the spatial distribution of noise energy; e+NAIe will be small if 0 is in a sec-
tor where the noise is concentrated. In the extreme case in which the noise consists almost entirely of
a single source at an angle near 0 the gain will be almost zero.

All of the above analysis assumed tacitly that the b remains the same, whether Ho or HI is true;
the definition of array gain depended on the same b being used in each case. For nonlinear bearing
estimation methods, such as maximum entropy and maximum likelihood, we must be careful when we
describe them in terms of filters, as in Eq. (C8). The b used in each of those methods is a function of
the measured cross sensor correlation matrix changes as we pass from Ho to HI. Trying to speak of
array gain in such cases leads to a lot of confusion, and much of what has been said in the literature
about these situations should be ignored. To analyze nonlinear methods properly, we must either drop
the idea of array gain or substitute some other notion that quantifies the statistical advantage we hope
to achieve. Array gain is about statistical behavior and it is only the latter that continues to concern us
when using nonlinear methods.
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- In most array 'processing situations we have many independent realizations of vector x. The max-
imum detection probability for a fixed false alarm rate is obtained by placing a threshold on the likeli-
hood ratio; the Gaussian assumptions tell us that

p(xjHO) - exp (-x+N-lx), and

p(xll) - exp (-x+(o-2 ee+ + N)-Yx),

so we maximize the (log of the) likelihood ratio

lp (xI H)/IIp(x HO), (C12)

where the product is over all realizations of x that we have obtained. Taking logs of Eq. (C12) and
using the identity

(aa+ + B)-1 = B 1 - (B-a)(B-la)+/(1 + a+B-1a), (C13)
we see that we must detect based on the size of the quantity e+NRIRN-l.e, where R is the average of
xx+ over all available x.

Using e+Re, the so-called conventional processor, is optimal within the narrow confines of the
two-hypothesis situation we have been using, with N = p2I, If we wish to improve sidelobe structure,
we must include potential sources at other angles within the noise component N.
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